
The vacuum stress tensor for automorphic fields on some flat space-times

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 2545

(http://iopscience.iop.org/0305-4470/12/12/032)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 12, 1979. Printed in Great Britain 

The vacuum stress tensor for automorphic fields on some flat 
space-times 

R Banach? and J S Dowker 
Department of Theoretical Physics, Schuster Laboratory, Manchester University, 
Manchester M13 9PL, UK 

Received 16 February 1979 

Abstract. We calculate the vacuum stress-energy tensor for scalar fields having an explicit 
U(2) symmetry and for neutrinos in three Rat space-times whose constant-r hypersurfaces 
are a 3-torus. Klein bottle and twisted 3-torus. For special values of the parameters, we 
regain previously calculated values. 

1. Introduction 

In the preceding paper (Banach and Dowker 1979) we outlined the general theory of 
fields on space-times with non-trivial fundamental group (automorphic fields) and 
treated some of the mathematical questions which arose. The approach was in many 
ways complementary to that of Isham (Isham 1978a, b, Avis and Isham 1978a) who 
classifies inequivalent vector bundle cross-.;ections on general space-times as twisted 
fields. If a space-time has a non-trivial fundamental group then a twisted field generally 
shows up as an automorphic field on the covering space for some representation of the 
fundamental group. On the other hand many automorphic fields are in fact gauge 
related provided one introduces the appropriate connection fields and hence represent 
the same twisted field. However the automorphic formalism, being a rigid-gauge 
formalism, avoids the need for additional connections which are not already present in a 
theory and the emergence of homotopically equivalent automorphic fields is the price 
one pays for this simplification. 

With the exception of a recent preprint by De Witt er a1 (1978) which includes spinor 
fields, the only calculations done so far concentrate on single real scalar fields where the 
gauge group is discrete (Z,) (thus automorphic fields are also twisted fields due to the 
absence of connections) and Abelian (Isham 1978a, Avis and Isham 1978b, Dowker 
and Banach 1978). The purpose of this paper is to extend the results to situations 
involving continuous and non-Abelian groups and to treat spinor fields in the 
automorphic formalism. We choose three space-times which are closely related factor 
spaces of infinite Minkowski space but which have significantly different geometrical 
properties. They are the torus, Klein bottle and twisted torus (defined in § 2) and we 
compute the Feynman propagator and hence the vacuum averaged stress tensor on each 
for a multiplet of scalar fields having a U(2) internal symmetry and for neutrinos. The 
Klein bottle in fact does not support neutrinos at all and we have to mix up left- and 
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right-handed neutrinos before we can get a sensible theory. The result is in fact nothing 
more than a Dirac bispinor in the Weyl representation. 

In 8 2 we set up the machinery that we need and then set up and solve the group 
representation problem in a manner sufficiently general to afford immediate extension 
to arbitrary groups and factor spaces. Sections 3 and 4 deal with the scalars and spinors 
respectively. An Appendix deals with the general question of transforming automor- 
phic objects into gauges which are not manifestly group invariant: an important topic 
since manifestly group invariant gauges are frequently not the ones we would prefer to 
work with. Pertinent examples arise in 8 4. This same problem also arises when we 
restore full gauge freedom to the fields on the covering space requiring the use of more 
general group representations as hinted at in Banach and Dowker (1979). It will be the 
subject of a subsequent paper. 

2. Basic formulae and the representation problem 

We recall that in general we are interested in a non-simply connected space-time M and 
its universal covering space A? with M = r/fi where r is a discrete group acting on M 
and r=  rrl(M). Fields on A? project down to TI&? by the general recipe # -+ 7 with 

where a (r) is a representation of in the gauge group appropriate to the situation in 
hand. The basic requirement is the invariance of the action under r a n d  for a linear field 
theory this leads to the conclusion that t i  (r) commutes with K(x ,  y )  where K ( x ,  y )  is the 
kernel of the action functional. Full derails of this can be found in Banach and Dowker 
(1979). The kernel itself must be group invariant which implies 

K(YX, Y) =K(x, Y - I Y ) .  ( 2 )  

We note that this relation embodies a built-in gauge-fixing procedure in that ( 2 )  
determines the relationship between the gauges used to express # ( x )  and # ( y x ) .  The 
gauge-rotated version of this will be treated in the Appendix but (2) is sufficient for 
normal purposes. 

We next turn to the representation problem which consists of finding all adn..ssible 
a (r) given r and the gauge group G of which a ( T )  is to be a discrete subgroup. It turns 
out that homotopy groups are usually expressed in generator-relation format and so we 
will review this topic briefly at this point. 

A group r is said to be generated by yl ,  y 2 ,  . . . , yn if every y E r can be written as a 
word in the y,, by which we mean a finite sequence whose elements are taken from the 
set of generators and understood to be multiplied as they stand. Thus 

(3) 

where the n, are positive or negative integers or zero and signify a subword consisting of 
In,] copies of y,  or its inverse or the identity element respectively. The set of all words in 
the yI is a group X ,  say, (usually different from r) and X is a free group. Now every 
group is a quotient of a free group on a set of generators by some normal free subgroup; 
thus r = X / R  and R is generated by some subset of X, A say, where A = {r , }  ( j  in some 
indexing set) and thus r is described completely by the pair ( { y z } ,  { r , ] ) .  Such a 

Y = Y;;Y;;. . . y;:, 
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description of a group is called a presentation and if both { y i }  and { r j }  are finite sets, the 
group is said to be finitely presented. 

Now consider a word of the form w = arjb, where a and b are arbitrary subwords and 
rj E A (the rj are called relations). Since R is normal we have 

o = arjb = abp (4) 

for some p ER.  Since r is the set of left R-cosets we can cancel the p on the right since 
abp and ab determine the same element of r. This leads to the substitution laws 

rj = e, (5  ) 

since whenever an rj (or combination of them) occurs in a word, the above algorithm 
enables us simply to replace it by the identity. 

Brushing aside technicalities, one might think that refinements of the above 
mechanism may enable us to express any arbitrary word in some sort of minimal 
'standard form'. This is the famous word problem, the proof of the unsolvability of 
which (even for finitely presented groups) constitutes one of those profound no-go 
theorems which have shaken up mathematics so much this century. 

The solution of the representation problem should now be virtually self-evident. 
Suppose r = ({'yi}, { r j } )  and for the moment let us suppose { r j }  = A = 0 and r is free; then 
let a be any function from { y i }  to G. The function a immediately extends to the whole of 

a ( r )  = u ( ~ Y ~ ~ Y ~ .  . . 77;) =[a('yi,)l"'[a(ri,)ln2. [ a ( ~ i k ) l ~ ~ *  (6) 

That this should be possible for any group G constitutes the definition of an abstract 
free group (see e.g. Rotman 1965) and is clearly a homomorphism. The relations are 
equally easy to deal with. Since y and 'yp ( p  E R )  determine the same group element it 
is clearly necessary and sufficient that 

(7) 

r by 

a ( r j )  = a ( e )  = e. 

Thus to find all admissible a ( T )  wc simply look for all solutions of (7) from among 
arbitrary functions a : { y i } +  G. 

Let us now apply this to the cases we are interested in. 
The space-times we are considering are all of the form T 0 M where M is a factor 

space of R3. The torus is generated by the three isometries 

AT: (x ,  Y ,  2 )  + ( x  +L, y, Z), 

B :  ( x ,  Y ,  2 )  + ( x ,  Y +M, 21, 

c: ( X , Y , Z ) + ( X , Y , Z + N ) .  (8) 

ATB = BAT, A& = CAT, BC = CB. (9) 

Y = (AT)'(B)"(c)",  I ,  m, n E Z, (10) 

It is obvious that these three commute so that the relations are 

Furthermore, because of commutativity we can write any word in 'standard form' 

so that any further relations satisfied by the group are redundant. 

becomes 
The (compactified periodic) Klein bottle differs only in the generator A which 

A K B :  b, Y ,  2 )  + (X +L - y ,  21, (11) 
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which changes the relations to 

AKBB = B- 'AKB,  A K B C  = CAKB,  BC = CB. (12) 
A little manipulation of the first of these shows that any power of AKB can be brought to 
the other side of any power of B provided we change the sign of the exponent of B, 
where necessary, hence a standard form like (10) applies. 

What, for the purposes of this paper, will be called the twisted torus again differs 
from the previous two only in its A-generator, which is 

A n :  ( ~ , y , z ) + b + L ,  - Y ,  -21, (13) 

and the relations are 

A n B  = B - ' A n ,  A n C  = C ' A n ,  BC = CB, (14) 

whence we can clearly write a standard form again. 
The particular group we are interested in is U(2)=U(1)  0 SU(2)/Zz, and the first 

thing to do is to find a convenient parametrisation of the group. Not surprisingly 
perhaps, the most convenient arises via the exponential map 

~ ( 2 )  = ~ ( 1 )  0 SU(Z)/Z, 3 g = eie exp(isfi . a)  = eie(O cos s + ifi . a sin s), (15) 

where f i  is a unit vector, (T, are the usual Pauli matrices and 0 is the identity matrix. 
Substituting this into the relations (9), (12) and (14) (with each generator replaced by its 
representative) gives us conditions to be satisfied by the parameters of the represen- 
tatives of the generators of the three factor spaces. 

Torus: u(AkB"C") = exp i(lBA + mes + nec) 

We find for the standard forms of the y the following: 

x [O COS(~SA + msB + nsc) + ifi . a sin(lsA + mse + nsc)] 
Klein bottle: u(AkBB'C") = ( * ) m  eii'eA+"eC [O COS(~SA + nsc) t ifi .  a sin(lsA + nsc)] 

(16) 
Twisted torus: 

where the Ok and s k  are arbitrary real numbers and f i  is an arbitrary unit vector. Note 
that in each case the representation is actually Abelian. 

Finally we recall some geometrical facts about our spaces. The torus is a homo- 
geneous space, being [Z/RI3, and as a coset space inherits its orientability and 
parallelisability from that of R3. The other two are non-homogeneous. The Klein 
bottle is not orientable as is practically obvious and it is not parallelisable either, for 
consider two non-zero everywhere-independent vector fields on R3, X and Y which are 
invariant under AKB; i.e. 

a ( A k B " C " )  = (*)"(*)" e"'̂ [O cos /SA+$. a sin /SA], 

AgBX = X ,  A E B Y =  Y. (17) 

They define a plane in the tangent space at each point. Add a third independent vector 
at some point to form a basis for vector fields there and consider its behaviour under 
AEB. The (Euclidean) angle between the vector and plane is a f 0, say, and after 
application of A z B  becomes - a ;  thus the intermediate value theorem prevents any 
continuous everywhere-independent extension to a global parallelisation. This lack of 
a parallelisation (or spinor structure, see Geroch 1968, 1970) presents certain obstacles 
to the construction of spinor fields as will be elaborated in 9: 4. 
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By contrast, the twisted torus is parallelisable (hence orientable). Here is a specific 
parallelisation: 

X ,  = -sin(.rrx/L)a, + cos(~x/L.)a,. 

We will use this structure explicitly to construct manifestly group-invariant neutrino 
fields on the twisted torus, This space is in many ways the most interesting of the three 
we consider since it has all the global geometrical properties that we would like but 
differs non-trivially from the homogeneous torus. It is also not something of a special 
case like the Klein bottle. 

The spaces we consider are not the only possibilities for r / R 3  of course. The 
complete classification can be found in Wolf (1967) and some remarks about other cases 
in De Witt e ta [  (1978). Our concern is not so much the physical relevance of the results 
(which is slight), but the exposition of general methods in a tractable context (hence the 
detailed presentation). The restriction to the three cases here is adequate from this 
point of view. 

3. The scalar case 

We consider a pair of complex massless scalars with the Lagrangian 

8 = &V,4 a )'(V"4=) - (5/2)42;4"R, a = l , 2 ,  (1% 

where R is the curvature scalar, the a 'metric' which is implied is just the identity and 
the covariant derivatives are just the partials since 4 is a scalar. The case 5 = k gives the 
conformally coupled theory (see Callan eta1 1970) in lowest order and 5 = 0 is the usual 
minimal coupling. This theory has an obvious rigid U(2) gauge symmetry. 

From this we can find the energy-momentum tensor in the usual manner and for its 
vacuum expectation we can write it in terms of the Feynman propagator 

ggb(x, x ' )  = i(OlT(4"(x)4~(Xf))IO) (20) 

(IOin) = lO,,,) = 10) because T 0 M is stationary hence (20) is correctly normalised) as 
(see De Witt 1975, Dowker and Critchley 1976, Schwinger 1951, Dowker and Banach 
1978) 

(T,,) = -2i Re lim tr[(l -25)V,V:+g,,(25-t)V,V'P -5(V,V, +VLVL) 
x'-x 

Strictly speaking, the point split object in (21) is not a geometric object and we would 
have to remedy this by incorporating parallel propagators as in Dowker and Critchley 
(1976), but the standard regularisation scheme for image sum type flat spaces is the 
dropping of the direct term which always gives the infinite Minkowski space constant; 
and this method is quite insensitive to these minor indiscretions. This can be verified 
directly, the affinity being integrable, due to the flatness of the spaces making the path 
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integral (see e.g. Boulware and Deser 1967) 

equal to just the geodesic contribution, and thus explicitly computable. 

ward. The Feynman propagator is given by 
Having repeated all of these familiar things, the actual calculations are straightfor- 

(23) 
X [  ( i a -p ) s in ( l . s ) ,  cos( / .s)- iysin( l .s)  

where 6 = (a ,  p, y ) ,  a 2  + p 2 +  y 2  = 1, I .  s and I .  0 take the values permitted by (16), 
1”L’ = (0, lL, mM, n N )  and no contraction is implied (similarly for Arx”’): 

cos(1. s) +iy  sin(1. s), (ia + p )  sin(1. s) 

A ;  = +l for the torus 

-1 f o r p  = 2  and lodd  

+1  otherwise for the Klein bottle 

- 1 for p = 2 or 3 and 1 odd 

i 
i +1 otherwise for the twisted torus. 

It is sometimes said that one can ‘regularise’ the propagator by dropping the 1 = 0 
term to get a regularised gF(x, x ’ ) .  This is incorrect. The basic reason is that to define 
an acceptable function on a factor space we take an image sum over a group. 
‘Translation invariance’ in the group then ensures that certain periodicity conditions 

are satisfied by the sum and hence that one fundamental domain is much the same as any 
other. Removing part of the sum destroys the periodicity conditions and so invalidates 
the remainder as a function on the factor space unless the removed part itself satisfies 
the correct periodicity conditions by some miracle. This certainty does not apply to the 
1 = 0 terms above-if it did there would be no need for the image sum at all. In the 
coincidence limit, most of the position dependence drops out, the 1 = 0 term gives a 
constant (albeit an infinite one) and the result turns out  to be acceptable. 

We can now calculate (T,”) quite generally from (21). The fifth and sixth terms 
obviously do not contribute and the fourth one does not either since it is only non-zero 
on the term that regularisation throws away. The rest can be written as (cf. Dowker and 
Banach 1978) 

-1 
( TWy) = 7 c’ 4 cos(1 . e )  cos(1. s)( (1 - 25)Avl( * ‘$$”) 

2Tr I H(1)2 + ____ 

where 
Z,, = lim ( x ,  - A,,x - 1JM) 

x’-x 
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and 

H ( I )  = -2 , iZf .  (26) 

Formula (24) in fact is general enough to apply to any of the spaces TOT/R3 
provided we interpret the group representation factors and the Apt correctly. After 
that it is just a question of collecting terms. For the cases of interest to us we find: 

Torus: 

where 

HT(I) = 12L2 + m2M2 + n2NZ 

and QT(I) and qTij(I)  are just the parts of cos(Z. s )  cos(Z. 0 )  having the correct 
evenness-oddness properties in 1, m, n to give non-vanishing contributions to ( TWv). 

@ = ( I )  is completely even, while q T i i ( I )  is odd in li  and li and even in l k .  Both contain 
the four possible terms consisting of products of six factors of the form 

each Bi and si appearing once in each term. 

Klein bottle: 

+ 

- 4(45- 1){$[1-( - 1)’]}12L2+ 166n2NZ 
( 1 )  
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41LnN 
X 2 2 3,  ([i2~’+{[1 - ( -  l ) ’ ] ~  - mM}’+ n N Il 

where 

12L2+m2M2+n2N2 1 even 
a2 1 odd’ HKBI(~)  = { 

l2LZ + ( 2 y  - mM)’+ n2N2 I odd 
HKBZ(~) = { a2 1 even’ (33) 

and 

@KB(I)  = (*)‘“[~os(l8A) cos(nec) cos(lSA) cos(nsc) 

Twisted torus: 
+ sin(leA) sin(n6c) sin(lsA) sin(nsc)]. (34) 

where 

12L2 +- m2M2 + n 2 N 2  1 even 
a2 1 odd ’ HTTI(~) = { 

12L2 + (2y - mM)’+ (22 - nN)’ 1 odd 
a2 1 even H T T Z ( ~  = { (37) 

and 

If we take the limits M, N + cc we get the results for the infinite slab, infinite Mobius 
strip and infinite twisted slab. For these cases, the summations can be reduced to 
Fourier series and with the help of Gradshteyn and Ryzhik (1965 Q 1.44), can be 
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expressed eventually in closed form. The resulting expressions are in general so long as 
to be virtually useless and so we do not list them here. For numerical approximation, 
the series expressions converge rapidly enough. Dowker and Banach (1978) give a 
detailed examination of some simpler cases to which the above results reduce if we set 
s =o. 

For ease of comparison, we postpone further discussion until we have listed the 
spinor results. 

4. The spinor case 

In a curved space, the left-handed neutrino Lagrangian can be written 

2 = (i/2)(det L)L:($'a"V,$ - (V,$.')ua$), (39) 

with aa = (0, -ux, -ay, -U* ) ,  the usual Pauli matrices; Lz is a set of tetrads, i.e. a 
solution of 

g,, = LZLbyTab or Tab = LzLEg,, (40) 

with tetrad indices raised and lowered by Tab and Greek indices by the usual g. $ is a 
two-component spinor and $' its Hermitian conjugate and the covariant derivative is 
given by 

V,$ = (8, + iB,)$, V,$-' = a,$' - i$'B,, 

B, = $BWab(Tab, aab = (i/2)[aa, ab ] ,  (42) 

B w a b  = r",pL,aLf +Lab(arrL;). (43) 

(41) 

Clearly the only gauge freedom left in (39) for use in automorphic projections is the 
usual U(1), and so the representations are just given by (16) with the SU(2) factors 
omitted. 

Again we can write the vacuum expectation of the stress-energy tensor in terms of 
the Feynman propagator 

(Tab) =t  lim tr (+(a[Vb)SF(X, x')-sF(x, x ' ) v ~ J ,  
XI'* 

where 

V, = (det L)L:V,, 

(45) 

(46) 

and we have expressed ( TWv)  in the tetrad basis. From a formal point af view, it is much 
better to work in the tetrad basis throughout (cf. Brill and Cohen 1966, Lichnerowicz 
1964) since to define a sensible spinor field on the factor space, the tetrad has to be 
group invariant, i.e. 

7"La =La, v Y  E r, (47) 

and it follows that everything else is also invariant when expressed in this basis. 
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For the torus all of the above is the veritable sledgehammer cracking a nut. We take 

(48) 

the Lz parallel to the coordinate axes which gives us the flat-space Dirac equation 

ir”d,SF(x, x’) = S(x, x’) 

SF(X, x’) = - i ~ ~ a , g ~ ( x ,  x‘), (49) 

T a  = (1, UX, UZ), (50)  
a,a’9aF(x, x’) = S(x, x’), (51) 

~ F ( x ,  x‘) = -i[4.rr2((t - 

solved by 

with 

and 

- ( r  - r‘12 - ie)]-’ (52) 

being the Minkowski scalar propagator, essentially the 1 = 0 term of (23). Since 
everything is manifestly r-invariant we may as well work with the 1 = 0 term and make 
the automorphic projection as the last step before the coincidence limit is taken. We 
find 

(53) 

1 1 ( t  - t ’ )  - ( z  - 2 ‘ ) ;  - ( x  - x ’ )  +i(  y - y ’ )  
SF(X, x’) =2 

257 [(t-t’)’-(r-r’)’-i~] -(x-x‘)- i (y  - y ’ ) ;  ( t - t ’ ) + ( z  - 2 ’ )  

and hence 

with HT(1) given by (30)  again. Naturally the implied long calculation above is 
circumvented by putting (49) directly into (45) (similarly to the scalar case) and 
obtaining (54) more quickly, but it is useful to write out (53) in readiness for considering 
the twisted torus which we now do. 

The spinor structure used for the torus, parallel to the coordinate axes, is unsuitable 
for the twisted torus; it does not satisfy (47). At another level, the propagator (53) does 
not satisfy ( 2 )  and so cannot be used in a naive image summation. What we require is a 
spinor structure like (18) on Minkowski space, which does satisfy (47). Putting this into 
the general formulae we find the explicit Dirac equation 

x SF(X, x’) = 6(x, x’). ( 5 5 )  

Now Minkowski space is topologically trivial so that all spinor structures are related by 
SO(1, 3) gauge transformations and these translate into SL(2, C) gauge rotations on the 
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spinors themselves (see Isham 1978b for a full discussion of these points as well as the 
topological pros and cons of the usual old wives’ tales about spinors); thus consider the 
gauge rotated version of (48): 
i[S(x)aaa,G(x, x’)S-’(x’)][S(x’)SF(X’, X”)S-’(X’’)] = S(X)S(X, x’~)s-’(x’’). (56)  

If S(x) is such as to change the differential operator in (48) to the one in ( 5 9 ,  the 
gauge-rotated SF(x, x’) will automatically be the Feynman propagator of (55) as well. 
The S(x)  we need is given by (see Goldstein 1950, p 115) 

1 c o s ( ~ x / 2 1 )  i s i n ( ~ x / 2 1 )  
i s i n ( ~ x / 2 1 )  C O S ( T X / ~ ~ )  ’ S(x)  = (57) 

yielding the propagator 

1 1 
SF(X, x’) =- 2T2 [ T ~ - x ’ -  Y ~ - Z * - ~ ~ I ~  

1, (58 )  
Tco - iXs, + Y s ~  - ZCO; .[ i Tso - Xco - i Yco - iZsQ; 

i TSO - Xco + i Y c ~  + iZsB 
TCG - iXs, - Y s ~  + Z C ~  

where 

T = ( t  - t ‘ ) ,  x = ( x  -x’), Y = ( y  -Y’L z = (2 - z ’ ) ,  

c Q = COS[T(X f x’)/2L], S 8 = sin[.rr(x * x’)/2L]. (59) 

It is clear that (58) now satisfies (2) and we can proceed with impunity. Actually, if we 
calculate with the explicitly group-invariant formula (45) we can again leave the image 
sum until the last step before the coincidence limit. Rotating back to the Cartesian basis 
will then give us ( TsY). 

All of this involves considerable labour so we avail ourselves of the mechanism 
explained in the Appendix. Essentially, this involves applying a gauge transformation 
to the projected SF to bring it into the usual flat space gauge and then working with 
Minkowski differential operators. Expressed in terms of the propagator (53), the 
twisted torus propagator now takes the form 

SFb, x’) 

=-c 1 
27r2 I { ( t  - t r )2  - (x - X I  - I L ) ~  - [ y - ( - 1)‘~’ -  m ~ ] ~  - [ z  - (-  1)’~’ -  n ~ ]  2 2  - i r )  

1 ( t  - t ’ )  - [ z  - ( -  1)’~‘-  n ~ ] ;  
- (x - X I  - 1 1 )  -i[ y - (-  1)’~’-  m ~ ] ;  

- (x - X I -  IL) +i[ y - ( - ~ ) ‘ y ’ -  m ~ ]  
( t  - t ’ )  + [ z  - ( -  1 ) ’ ~ ’ -  n ~ ]  

63)‘ 
The factors [ia;]’ play the part of the S(y) 
some algebra we find 

S(yx)S-’(x) of the Appendix (A15). After 
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Hrrl(l)  = (21)'L2 + m2M2 + n 2 N 2 ,  

Hnz(1)  = (21 + 1)'L' + (2y - mM)2 + (22 - nN)'. 
(62) 

(63) 

Note that the sums involving H 4 1 )  are unprimed; in (61) 1 is used to label (even and 
odd) subsets of integers and is no longer a group element label; thus the ' I  = 0' term 
automatically disappears in the odd case. 

There remains the Klein bottle. As proved in § 2, no spinor structure exists here 
and so there is no possibility of constructing a manifestly group-invariant theory of 
neutrinos at all. 

At the propagator level, this shows up in the failure of (2) to hold with the group 
operations of the Klein bottle and any gauge rotated version of (53); specifically 

SF(AKBX, x') f S ~ X ,  A&x'). (64) 

We might care to examine where the equality breaks down; it is simply a sign change in 
the ( y - y') term. If we could, by a similarity transformation, interchange the off- 
diagonal terms in (53) leaving the others alone, then we could set up a transformation 
law as in the Appendix (A7) and hence construct an acceptable theory. It is not difficult 
to see that this is impossible. What however is possible is 

S ~ ( A K ~ X ,  x') = [ia,]S:(x, A&x')[-ia,], 

ST! (AKBX, x ' )  = [ - ia,]Sk(x, A&x')[i(~,], 

where Sk is the left-handed propagator (53) and Sp is the right-handed neutrino 
propagator which differs from (53) merely by a sign change in the (x -x ' ) ,  ( y - y ' )  and 
( 2  - 2 ' )  terms. This should not surprise us. The AKB generator of the Klein bottle is 
essentially a parity transformation. Neutrinos have no self-contained covariance under 
parity; instead, left- and right-handed neutrinos are interchanged (see e.g. Bade and 
Jehle 1953) and thus the mixing up of left and right neutrinos on a Klein bottle is to be 
expected. 

We can rewrite (65), (66) as 
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with 

and 

and we recognise the propagator for a massless Dirac bispinor in the Weyl represen- 
tation which is simply a pair of left- and right-handed neutrinos; and iy, = yoyxyr is the 
parity operator. 

By (A15) the Klein bottle propagator is now (I labels the AKB power) 

Note that for odd I, the non-zero part of the propagator is thrown into the diagonal 
sub-blocks of S,". Taking traces with the Weyl representation yF,  equation (69), as 
required by ( 4 3 ,  reveals that the odd 1 terms make no contribution to (TFy) and we 
immediately regain the result of De Witt etal (1978) that (TFy) on the Klein bottle for a 
bispinor is given by the expression for a torus of dimensions (2L, M, N) with the a ( y )  
phase factors modified to the Klein bottle ones. 

This completes the presentation of the results. 

5. Discussion 

It is time to clothe the rather naked formulae of the previous two sections with some 
commentary. Firstly we want to comment on their general self-consistency. For the 
scalar case, reducing the SU(2) factors to the unit element, and the U(l) factors to f 1, 
gives us the previously obtained results for standard and twisted real scalar fields 
contained in Dowker and Banach (1978) and De Witt etal (1978), apart from the factor 
of four which is a degrees of freedom adjustment. For the spinors, reduction of the U(l)  
factors to f 1 gives us the results for standard and twisted spin connections, discussed so 
comprehensively in Isham (1978b). The classification theory presented there shows 
that spinor connections are classified by the same cohomology group as real scalars so 
one might anticipate the f 1 factors on those grounds; but we have much more direct 
confirmation of this, namely the results of the twisted-torus neutrino calculation. If 
we drop the odd-I image terms from the calculation, we arrive at a torus of dimensions 
(2L, My N )  but this time equipped with a rotating spin connection. We see that apart 
from trivial adjustments to the U(1) factors, the resulting (TFy) is just that for the 
ordinary torus with the spinor field satisfying an anti-periodicity condition 

9(A!rx) = (-  1) '+ (~ ) .  (71) 

The vanishing of the off -diagonal components of ( TFy) is now caused by the restricted 
nature of these U(1) factors for the twisted torus. All of this agrees precisely with the 
simple twisted spinor calculation given in De Witt et a1 (1978). 

We can just as easily consider twisted spin connections on the twisted torus itself. In 
this case we would need to rotate the connection through 37r rather than T upon 
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application of An. This would cause the [icX] factor in (60) to be changed to 
[iaXI3 = [ - io;] and hence would make no difference to the even-l terms and make the 
odd4  terms change sign. Thus the diagonal part of (TMu} would stay the same while the 
off -diagonal part would change sign. Another way to see the same thing is to retain only 
the 1 = 3k terms in the twisted torus calculation, giving a twisted torus of dimensions 
(3L, M, N )  and a spin connection which rotates through 371. along the x direction. 
Rescaling then gives the required result. 

By the Isham result, there are no spinor connections (apart from ones also twisted in 
the y and z directions which, as is fairly obvious, are all taken care of by the U( 1) factors 
set to * 1) which are not equivalent to one of these. This is a striking illustration of the 
2-1 nature of the SL(2, C )  +SO(l ,  3) covering; rotating frames through 27r sends Q to 
- JI and a rotation of 471. is needed to regain the original $, 

Note the contrast between the (Tt,)  terms for the spinor and scalar fields on the 
twisted torus. The non-zero ones in the one case are precisely the zero ones in the other 
and vice versa. It would be hard to find firmer confirmation of the comments in Dowker 
and Critchley (1976) that destroying global Poincare invariance in a space-time 
removes any covariance necessity for a tensor constructed from a field theory to be 
proportional to T ~ ~ .  At the same time note the non-vanishing (Tal) for the twisted torus 
spinors. Its presence is in disagreement with the stated vanishing of (To,)  for static 
space-times in Dowker and Kennedy (19781, who do not consider any twisting up of a 
field, the basic cause of the non-zero (Tal). Admittedly one can make (Tal) vanish by 
suitable choice of 8, either 0 or T ,  which are just the values you need to give to 8 to 
obtain the untwisted and twisted spinors of Isham’s classification, and this leads us to 
ask what is the physical significance (if any) of the various ~ ( y )  factors that we can 
derive. 

As has been stated before (Dowker and Banach 19781, the biggest clue we have 
comes from the Aharonov-Bohm effect (see e.g. Schulman 1971). There, in a one- 
particle formalism, the Hamiltonian fails to be given simply by its expression as a 
differential operator and specific boundary conditions (our a ( y )  representation factors) 
have to be included before the differential operator defines an essentially self-adjoint 
operator on a Hilbert space. In a many-body formalism like field theory, the same 
situation arises, as the most cursory examination of the Fock-Cook construction (Cook 
1953, Emch 1972) reveals. Thus we are tempted to identify the a ( y )  with fluxes of 
external gauge potentials which pass through the ‘holes’ in our space-time. For the 
U(1) factors we find the usual interpretation of a(generaror) being proportional to the 
electromagnetic flux, exactly as in the Aharonov-Bohm effect, while for the SU(2) 
factors, one might set up a similar scheme interpreted as, perhaps, isospin. 

All of this works quite nicely for tori where we can ‘see’ the holes and picture the flux 
going through them (although we carefully avoid the philosophical minefield that opens 
up before us when we start talking about an electromagnetic field situated outside the 
universe), but for the non-homogeneous cases we find some problems. Certain of the 
a (generator) are restricted to a discrete set of values and one is naturally tempted to 
speculate about the ‘topological quantisation of the external potential’ but a little 
thought shows that nothing in a geometrical picture can set the value of a flux that is 
capable of being drawn on paper to one of a discrete rather than continuous set of 
values. Then again, even such a simple space as the two-dimensional Klein bottle is a 
one-sided surface and hence the inside and outside of one of its holes are the same; so 
where exactly is the flux supposed to go? In these cases, the discrete possibilities for 
a ( y )  clearly signal the presence of homotopically inequivalent bundle cross-sections. 
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The cases where there are continuous families of a(?)  signal equally clearly the 
presence of some degree of homotopic redundancy. The fact that we can move 
smoothly from one representation to another means that if we gauge the rigid degrees of 
freedom, gauge transformations will render equivalent these representations. For 
example on T 0 S' (an example considered in Isham 1978a) there are no inequivalent 
complex scalar fields but we find a one-parameter family (depending on eA)  by suitably 
restricting the results for the torus in 9: 3. The introduction of an electromagnetic 
external gauge field A,  into the problem trivialises all of these OA-dependent U(1) 
bundles and we recover Isham's result (Isham, private communication). 

Nevertheless, it should not be thought that all continuous families of representations 
should be discarded in favour of just one of their members. Consider the case of the 
neutrinos in 9: 4. The U(1) factors are all trivialisable (for the torus say) but they are only 
U(1)-trivialisable. Performing the U( I) trivialisation would throw away the twisted 
spinor case which is not SL(2, @)-trivialisable and hence counts as an inequivalent 
spinor result. Thus we find that the continuous families of representations often 
interpolate between genuinely inequivalent bundle cross-sections. We have to examine 
the cohomology results to ensure we do not throw away important cases. 

Returning briefly to T 0 S' we remark that there is one possibility for complex 
scalars not considered in the above, and that is 

4Jb + L )  = 4J*(x) ,  (72) 

where * is charge conjugation. This is inequivalent to the cases considered since it 
corresponds to enlarging the gauge group from SO(2) to O(2). There is no reason to 
exclude this as it is a bona fide symmetry of the Lagrangian and remarks about charge 
conservation violation in this and related situations can be found in Kiskis (1978). The 
reason we mention it here is that an analogous mechanism is at work in the Klein bottle 
spinor calculation where the enlargement of the gauge group is from SL(2, C) to 
SL(2, C) 0 SL(2, C)* where SL(2, C)* denotes the conjugate action of SL(2, C), 
appropriate to right-handed neutrinos. This gauge group covers the enlargement of 
S0(1 ,3)  to include the parity transformation which lies outside the identity component 
of 0 ( 1 , 3 )  and hence is not in S0(1,3) .  One consequence of this is the impossibility (as 
we saw) of satisfying (2), and so we may generally presume that when we deal with gauge 
transformations outside the identity component the same applies, and we have to 
weaken (2) to at least 

K(rx, Y )  = S ( y ) K ( x ,  Y - ' Y ) s - ' ( Y ) ,  (73) 

and more generally to (A7). 
Finally, we comment on the SU(2) representations themselves. As noted in P 2, they 

are actually Abelian and thus cannot be irreducible. In fact, in the notation of (15) 

(74) V(t, n*)U(s,&U(-t, n * ) =  U [ s , c o s 2 t ~ + s i n 2 t ( B x r i ) + ( l - ~ o s 2 t ) ( ~  .i?)n*], 

and so we can bring 6 to the z direction by a gauge transformation, diagonalising a (r) 
which now explicitly represents two independent complex fields. The independence of 
the physical results of f i  is a consequence of this gauge freedom in the problem and the 
flexibility of interpretation that goes with it. 

To conclude, we have shown how to deal with fields on multiply connected spaces in 
a fairly general manner. In the rigid gauge framework of automorphic field theory, the 
fields are either members of continuous families (a reflection of the infinite nature of the 
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discrete group) or  of discrete ones, and we have demonstrated a limited degree of 
success in interpreting the former by analogy with the Aharonov-Bohm effect. The 
latter case does not seem to yield such an interpretation easily. 
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Appendix 

In  this Appendix we cast some of the general theory of projection operators cor- 
responding to discrete groups into a gauge rotated form. Let us start with a free field 
Lagrangian 

9=4; ' (x )K(x ,  Y)4(Y), (AI) 

where the dagger represents a suitable adjoint operator and K(x, y )  is the appropriate 
linear operator. As in Banach and Dowker (1979), the group invariance of the action 
leads to the group invariance of 2' and thus 

9= 4;'(X)K(X, Y ) @ ( Y )  =@+(x)a-'(Y)K(Yx, r Y ) a ( Y ) @ ( Y ) .  (A21 

Requiring that the action of K and commute leads to 

K(YX, y)=K(x,  Y - l Y ) ,  V Y  E r, (-43) 

and hence, from (A2), we conclude that a ( T )  and K(x, y )  commute. Thus we see that 
the permitted gauge group for projections, a ( T ) ,  is one which actually leaves K 
invariant and as such deals with degrees of freedom for which gauge connection fields 
have nor been introduced into K (if they had, local gauge transformations would render 
equivalent many automorphic fields and we would be in the domain of Isham's twisted 
fields); it is thus a rigid gauge group. 

For degrees of freedom that are gauged in K, we note (as in 0 2) that (A3) or its 
equivalent 

K(YX, Y Y )  =K(x, Y )  (A41 
gives a gauge fixing procedure for fields at x and at yx. Since different gauges must be 
regarded as equivalent, we need a way of pairing up the gauges at x and yx. Since the 
Lagrangian is gauge covariant, it does not yield a gauge fixing rule itself-we must 
impose some condition a priori, and the commuting of K and r (and hence (A3)) is the 
most natural one. 

Now suppose we are interested in working in a different gauge for which the fields 
are transformed as 

4 ( x ) - $ 4 s ( x ) = S ( x ) 4 ( x ) ,  ('45) 

where S ( x )  is some general position-dependent gauge transformation which does not 
encroach upon the a (r) degrees of gauge freedom. K(x, y )  then becomes 

K ( x ,  Y)+KS(X, Y )  =S(x)K(x, y ) S - ' ( y ) ,  (A6) 
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If it now happens (as it does in 0 4) that we can arrange that the factors S(yx)S- ' (x )  are 
in fact independent of x, i.e. 

S(rx)s-'(x)= S(Y) ,  

then 

S ( y )  = S(yx)S- ' (x )  = S[y (y - 'x ) ]S - ' (y - 'x )  = S(x)S- ' (y - 'x ) ;  (A1 1) 

hence 

s(y- ' )  = s ( y - ' x ) s - ' ( x )  = s- ' (y)  

S(Yl )S(YZ)  = s(rlx)s-'(x)s(x)s-'(Y;'x) = s ( Y l x ) s - ' ( Y ; ' x )  

(A121 

and 

= s(YlYzx')S- '(x ')  = S(YlYZ) ,  (A131 
so that S(T) is a representation. 

Equations (A8) and (A9) now become 

which look very much like the unrotated forms given in Banach and Dowker (1979), the 
difference being the gauge factors S ( y )  which no longer commute with &(x,  y ) .  The 
significance of the factors S ( y )  is of course perfectly clear. They simply compensate for 
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the different quantities of gauge rotation we choose at the points x and yx. If 
S(r) 0 then S ( x )  is an explicitly group-invariant gauge transformation on the covering 
space and in that case the theory using the rotated or unrotated form is the same. 
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